欧美日韩午夜群交多人轮换,亚洲日韩精品欧美一区二区一,亚洲情综合五月天,毛片24种姿势无遮无拦

18123966210

product

產(chǎn)品中心

當前位置:首頁產(chǎn)品中心Ossila英國Ossila材料M261/PTB7-Th/PBDTTT-EFT/英國Ossila材料PCE10

英國Ossila材料M261/PTB7-Th/PBDTTT-EFT/英國Ossila材料PCE10

產(chǎn)品簡介:英國Ossila材料M261/PTB7-Th/PBDTTT-EFT/英國Ossila材料PCE10
英國Ossila代理、廠家直接訂貨、原裝正品、交期準時、洽談?。?!

產(chǎn)品型號:

更新時間:2023-04-02

廠商性質(zhì):代理商

訪問量:9226

服務熱線

0755-23003036

立即咨詢

產(chǎn)品分類

PRODUCT CLASSIFICATION

相關文章

RELATED ARTICLES
產(chǎn)品介紹

只用于動物實驗研究等

Batch details

Batch numberMWPDIStock info
M261> 40,0001.8-2.0In stock

英國Ossila材料M261/PTB7-Th/PBDTTT-EFT/英國Ossila材料PCE10

General Information

Full namePoly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]
SynonymsPCE10 / PBDTTT-EFT / PTB7-Th
Chemical formula(C49H57FO2S6)n
CAS number1469791-66-9
HOMO / LUMOHOMO = 5.24 eV, LUMO = 3.66 eV [1]
Opticalλmax = 720 nm; λedge = 785 nm; Eg (optical) = 1.58 eV
Classification / Family

Thienothiophene, Benzodithiophene, Heterocyclic five-membered ring, Organic semiconducting materials, Low band gap polymers, Organic Photovoltaics, Polymer Solar Cells

Applications

PCE10 (PTB7-Th, PBDTTT-EFT) is one of the new generation of OPV donor polymers that could deliver on the heralded 10/10 target of 10% efficiency and 10 years lifetime. Brand new to the Ossila catalogue, this material is already showing impressive potential with in excess of 9% efficiency reported in the literature and over 7% produced when using large area deposition processes in air with a standard architecture [1,2]. In our own labs we have achieved efficiencies of over 9%.

The advantages of PCE10 are that not only does the material lower HOMO/LUMO levels and increase the efficiencies compared to PTB7, but more significantly it is also far more stable. Early indications are that it can be handled under ambient conditions without issues, suggesting that we can look forward to measuring the long term lifetime of the devices.

PCE10 is one of the most exciting materials to have made it out of the labs in recent years and offers huge potential for more in depth research. We'll be working hard over the next few months to maximise efficiencies by optimising the device architecture, and we will provide further results as we do so. In the mean time, our current fabrication routine is below, and should you have any further questions or queries please contact us.

Usage Details

Reference Devices

Reference devices were made on batch M261 to assess the effect of PBDTTT-EFT:PC70BM active layer thickness on OPV efficiency with the below structure. These were fabricated under inert atmosphere (N2glovebox) before encapsulation and measurement under ambient conditions.

Glass / ITO (100 nm) / PEDOT:PSS (30 nm) / PBDTTT-EFT:PC70BM (1:1.5) / Ca (5 nm) / Al (100 nm)

For generic details please see the fabrication guide and video. For specific details please see the below condensed fabrication report which details the optical modelling and optimisation of the multilayer stack.

The PBDTTT-EFT:PC70BM solution was made in chlorobenzene at 35 mg/ml before being diluted with 3% diiodooctane (DIO) to promote the correct morphology.

Active layer thicknesses were achieved from spincasting the film at spin speeds of 2000, 2700, 3900 and 6000 rpm for 30s. Additionally, a methanol wash was performed for all devices to help remove the DIO additive. For each of these spin speeds a total of 2 substrates (3 in the case of 2700 rpm) was produced, each with 8 pixels and the data presented below represents a non-subjective (no human intervention) analysis of the best 75% of pixels by PCE (18 pixels for 2700 rpm condition, 12 pixels for each other).

Overall, the average efficiency of 8.30% PCE (9.01% maximum) was found from a 2700 rpm spin speed.

ote on effect of epoxy: Due to the very high solubility of the PBDTTT-EFT it was noted during fabrication that the film changed colour when in contact with the encapsulation epoxy in liquid form for extended periods indicating that there was some miscibility. Inspection of the active areas underneath the top cathode indicated that the epoxy had not seeped into the active area before curing and device metrics indicate that this did not appear to affect performance. However, we would recommend minimising contact time between the epoxy and PBDTTT-EFT films before UV curing.

英國Ossila材料M261/PTB7-Th/PBDTTT-EFT/英國Ossila材料PCE10

Condensed Fabrication Routine

Substrates and cleaning

  • Edgeless 8 pixel substrates (S211)
  • 5 minutes sonication in hot 10% NaOH solution
  • 1x boiling DI dump rinse, 1x cold dump rinse
  • 5 minutes sonication in hot 1% Hellmanex III
  • 2x boiling DI rinses, DI
  • 5 minutes sonication in warm IPA
  • 1x boiling DI dump rinse, 1x cold dump rinse
  • N2 blow dry
  • Substrates held on a hotplate at 120°C before spin-coating the hole transport layer (no further cleaning or surface treatment required)

PEDOT:PSS

  • PEDOT:PSS (AI4083) filtered through a 0.45 µm PVDF filter
  • Spin on heated substrates at 6000 rpm for 30s
  • Bake at 120°C after spincast
  • Cathode strip wipe with DI, replaced back on hotplate until transfer to glovebox
  • Additional bake in the glovebox for 30 mins to remove residual moisture

Active Layer Solution

  • Fresh stock solutions of PBDTTT-EFT (M261) made at a concentration 14 mg/ml in anhydrous CB and dissolved at 70°C for 1.5 hours
  • Mixed with dry Ossila 95% C70 PCBM at a blend ratio of 1:1.5 to make an overall solution concentration of 35 mg/ml
  • Mixed in 3% DIO and then heated the solution at 70°C with a stirbar for 2 hours
  • Cooled prior to spincasting

Active layer test films

  • Test film spun at 2000 rpm for 30s using unfiltered solution with a methanol wash before measuring with a Dektak surface profiler
  • Reference film displayed a thickness of 140 nm

Active layers

  • Devices spun using 30 µl dynamic dispense for 30s
  • Methanol wash was then immediay performed as a secondary spin step, 20 µl at 4000 rpm for 30 seconds
  • Cathode wiped with CB

Evaporation

Left in vacuum chamber overnight and evaporated with the below parameters.

  • 5 nm Ca at 0.2 ?/s
  • 100 nm Al at 1.5 ?/s
  • Deposition pressure

Encapsulation

  • As standard using Ossila EE1, 30 mins UV in MEGA LV101

Measurements

  • JV sweeps taken with Keithley 237 source-meter
  • Illumination by Newport Oriel 9225-1000 solar simulator with 100 mW/cm2 AM1.5 output
  • NREL certified silicon reference cell used to calibrate
  • Lamp current: 7.8 A
  • Solar output at start of testing: 1.00 suns at 23°C
  • Solar output at end of testing: 1.00 suns at 25°C
  • Air cooled substrates
  • Room temperature at start of testing : 25°C
  • Room temperature at end of testing: 25°C
  • No aperture mask, pixel size: 0.4 mm2

 

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

References

Please note that Ossila has no formal connection to any of the authors or institutions in these references):

  1. Side Chain Selection for Designing Highly Efficient Photovoltaic Polymers with 2D-Conjugated Structure, S. Zhang et al., Macromolecules, 47, 4653-4659 (2014)
  2. Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain?, L. Ye et al., Chemistry of Materials., 26, 3603-3605 (2014)
在線留言

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說明:

  • 驗證碼:

    請輸入計算結(jié)果(填寫阿拉伯數(shù)字),如:三加四=7

服務熱線
18123966210

掃碼加微信

亚洲精品乱码久久久久久自慰| 青青青国产精品一区二区| 亚洲国产一二三精品无码| 亚洲欭美日韩颜射在线二| 乱精品一区字幕二区| 一卡2卡三卡4卡免费网站| 亚洲AV无码成H人动漫无遮挡| 国产精产国品一二三产区区别| 国产在线精品一区二区不卡| 日韩人妻无码一区二区三区综合部 | 国产精欧美一区二区三区| 69国产成人精品午夜福中文| 成人AV专区精品无码国产| 日本无遮挡吸乳视频| 国产A级毛片久久久精品毛片| 无码高潮喷水在线观看| 国产自偷自偷免费一区| 五月狠狠亚洲小说专区| 日韩欧美群交p片內射中文| 精品久久亚洲中文无码| 男人的天堂免费a级毛片无码 | 亚洲国产日韩欧美高清片| 国产老熟女狂叫对白| 日日av拍夜夜添久久免费| 久久九九久精品国产| 亚洲熟妇色xxxxx欧美老妇y| 天天澡日日澡狠狠欧美老妇| 国产成人8x视频网站入口| 色V99在线影院| 精品亚洲AV无码 一区二区三区 | 国产精品老熟女露脸视频| 久久久精品国产sm调教网站| 亚洲av熟妇高潮30p| 国产成人亚洲综合图区| 99精品国产在热久久婷婷| 国产精品麻豆成人AV电影| 乱中年女人伦av三区| 精品亚洲国产成av人片传媒| 欧美精欧美乱码一二三四区 | 中文字幕在线免费看线人| 夜夜躁狠狠躁日日躁|